Publications du MATIS
Auteur : Loïc Landrieu

2018

S. Bailly, S. Giordano, L. Landrieu, N. Chehata. Temporal Structured Classification Using Sentinel Image Time Series for Crop Type Mapping. in Proc. of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, July 2018.  

L. Landrieu, M. Simonovsky. Large-scale point cloud semantic segmentation with superpoint graphs . In Proc. CVPR, Salt Lake City, Utah, USA, June 2018.  

H. Raguet, L. Landrieu. Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with Graph Total Variation. In Proc. ICML, Stockholm, Sweden, July 2018.  

L. Landrieu, M. Simonovsky. Segmentation Sémantique à Grande Echelle par Graphes de Superpoints. Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), Champs-sur-Marne, France, June 2018.  

2017

L. Landrieu, C. Mallet, M. Weinmann. Comparison of belief propagation and graph-cut approaches for contextual classification of 3D LIDAR point cloud data. Proc. of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, July 2017.  

S. Guinard, L. Landrieu. Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017, pp.151-157, Hannover, Germany, 6–9 June 2017.  

S. Guinard, L. Landrieu, B. Vallet. Pré-segmentation pour la classification faiblement supervisée de scènes urbaines à partir de nuages de points 3D LIDAR. ORASIS 2017, Colleville-sur-Mer, France, 12-16 juin 2017.  

L. Landrieu, H. Raguet, B. Vallet, C. Mallet, M. Weinmann. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 132, pp.102-118, 2017.  

L. Landrieu, G. Obozinski. Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs. SIAM Journal on Imaging Sciences, 10(4), pp.1724-1766, 2017.  

Site internet de la recherche à l'IGN