Mots-clés :
matériaux urbains, BRDF, classification, modélisation radiométrique, correction des ombres.

Résumé :
Depuis quelques années, l'apparition de nouveaux capteurs aéroportés et satellitaires a conduit à l'obtention d'images numériques à des résolutions submétriques, qui permettent d’envisager de nouveaux modes d’étude des environnements naturels et humains. En particulier, l’étude du milieu urbain, dont une des caractéristiques principales est sa structure tridimensionnelle, bénéficie de l’apport de ces nouvelles données. Cette thèse s’inscrit ainsi dans le cadre général des techniques de télédétection appliquées au milieu urbain à très grande échelle. Nous nous intéressons plus particulièrement à la caractérisation des matériaux couvrant les bâtiments. Pour cela, nous avons retenu une approche essentiellement physique consistant à exploiter la façon dont ces matériaux réfléchissent la lumière selon leur orientation relative par rapport aux sources lumineuses et aux directions d’observation. L’objectif de cette thèse est ainsi d’obtenir leur classification exclusivement à partir de leurs propriétés angulaires de réflexion, ce qui se traduit par l’identification de leur BRDF (Bidirectional Reflectance Distribution Function) dans des images aériennes.
Nous disposons en effet d’images couleur à large bande en multirecouvrement, et d’un modèle 3D de la scène urbaine déjà segmenté. Une surface telle qu’un toit est typiquement vue sur une dizaine d’images, c’est-à-dire sous une dizaine de points de vue différents. L’identification des BRDF des matériaux revient essentiellement à un problème d’inversion de l’équation de transfert radiatif ayant conduit à la formation des images. Il s’agit, par le biais des images aériennes et de notre connaissance sur les conditions de prises de vue de la scène, d’accéder aux éclaircements incidents sur les surfaces observées ainsi qu’aux luminances reçues par la caméra. On en déduit alors la BRDF des matériaux et, in fine, leur classification. Le problème peut donc être divisé en trois grandes étapes : tout d’abord, la compréhension et la modélisation des principaux termes radiométriques en milieu urbain ; ensuite, l’établissement de l’équation radiométrique conduisant à la formation des images et son inversion ; enfin, la classification proprement dite des surfaces en classes homogènes de matériaux.
Ainsi, nous nous sommes tout d’abord intéressés aux processus physiques conduisant à l’éclairement des surfaces et à la formation des images dans la caméra numérique. Nous avons notamment créé un outil de simulation des éclaircements arrivant sur une scène urbaine, connaissant les conditions de prises de vue, en particulier les conditions atmosphériques. Cet outil présente de plus un intérêt intrinsèque, puisqu’il a permis de réaliser des corrections des ombres de très bonne qualité en milieu urbain dense, validant ainsi les valeurs relatives des éclaircements obtenus.
Connaissant les termes radiométriques dominants en milieu urbain, nous avons pu établir une équation radiométrique reliant les éclaircements issus des sources lumineuses, les luminances reçues par la caméra, et les BRDF des matériaux. Après avoir choisi un modèle paramétrique de BRDF bien adapté à notre cadre d’étude, le modèle Torrance-Sparrow-Oren-Nayar, nous avons réalisé l’inversion de cette équation radiométrique. Nous avons ainsi obtenu pour chaque surface les paramètres dont dépend le modèle de BRDF.
Nous avons enfin réalisé une classification non supervisée des différentes surfaces en classes homogènes de matériaux. Pour cela, nous avons proposé une mesure de similitude entre modèles de BRDF, permettant de s'affranchir des problèmes d'ambiguïtés et de mauvaises déterminations des paramètres des modèles de BRDF. Les résultats obtenus permettent de mettre en évidence l’intérêt de tenir compte des propriétés de réflexance directionnelle des matériaux pour les différencier, et les limites de l’approche.