
Hierarchically exploring the width of spectral bands
for urban material classification

Arnaud Le Bris, Nicolas Paparoditis
Univ. Paris-Est, LASTIG MATIS

IGN, ENSG
Saint-Mande, France

Email: {arnaud.le-bris ; nicolas.paparoditis}@ign.fr

Nesrine Chehata
EA 4592, G&E, Bordeaux INP

University of Bordeaux
Bordeaux, France

Email: nesrine.chehata@ensegid.fr

Xavier Briottet
ONERA

The French Aerospace Lab
Toulouse, France

Email: xavier.briottet@onera.fr

Abstract—In urban areas, material maps, i.e. knowledge
concerning the roofing materials or the different kinds of ground
areas, are necessary for several city modeling or monitoring
applications. Airborne remote sensing techniques appear to be
convenient for providing them at a large scale but require an
enhanced imagery spectral resolution. A superspectral sensor
with a limited number of bands dedicated to urban materials
classification could be a solution. Within this context, this study
focused on the optimization of this band subset from hyperspec-
tral data, considering both the position of the bands and their
width. The used approach first builds a hierarchy of groups
of adjacent bands, according to a relevance criterion to decide
which adjacent bands must be merged. Then, band selection
is performed at the different levels of this hierarchy. Several
band configurations are thus explored within this hierarchy. This
method was applied to a data set consisting of spectra generated
from reflectance spectral signatures of 9 common urban materials
collected from 7 spectral libraries. At the end, the potential of a
superspectral sensor with wider bands was confirmed.

I. INTRODUCTION

A. Some needs for urban materials maps

Needs for high resolution land cover data have been grow-
ing, to answer several societal, regulatory and scientific needs,
to produce environmental indicators to manage ecosystems and
territories, to monitor environmental or human phenomena,
or to be able to have a picture of an initial situation and to
evaluate the impacts of public policies. To answer these needs,
national mapping or environment agencies have undertaken the
production of large scale land cover databases. Nevertheless,
these databases provide a general classification and may not
suit some specific applications requiring a finer semantic
or geometric level of details. Indeed, in urban areas, both
semantic and spatial finer knowledge about land cover, i.e.
a map of urban materials, is required by several city modeling
applications. Urban environment is indeed strongly influenced,
in terms of ecology, energy and climate by the present mate-
rials. Such material maps would be useful to derive indicators
to monitor public policies impacts, or to feed urban simulation
models (such as micro-meteorology, hydrology, pollutants flow
and ground perviousness monitoring). Several applications
requiring materials maps are listed in [1] and [2] and reminded
below.

1) Quantification of pollutant flows: By corrosion, some
roofing materials can generate metallic or organic pollutant ele-

ments [3], [4]. Knowledge about the different roofing materials
coverage areas is thus needed to quantify these emissions.

2) Monitoring of dangerous materials: asbestos-cement
roofs: [1] Asbestos-cement can be dangerous for human
health, especially when they are deteriorated.

3) Weather models: Urban land cover (in terms of ma-
terials, perviousness and vegetation) are required by micro
weather (wind, temperature, ...) model simulators [1], [5].

4) Monitoring of ground perviousness: Monitoring the
extension of impervious areas and checking their appliance
to new legislation is important, since the development of
impervious areas causes an aggravation of flooding events.
Otherwise, perviousness maps are required as input data by
(micro) hydrological models [1].

5) Determination of road type and monitoring of road
condition: Maps of road types are useful for some of the
mentioned applications (meteo, hydrology). A more complex
one is the monitoring of road condition to plan road network
renovation projects avoiding expensive field investigation [6].

6) Monitoring of photo-voltaic (PV) development: Roofing
material maps help to estimate the potential of a city to develop
PV energy [7] and detecting installed panels enables to monitor
the development of this technology.

B. Toward a superspectral camera ?
Thus, very high resolution urban land cover is required

to provide knowledge about the roofing materials and the
different kinds of ground areas. Airborne remote sensing
appears to be convenient for obtaining such material map at a
large scale, but requires an enhanced spectral resolution using
superspectral or hyperspectral sensors. Hyperspectral imagery
consists of hundreds of highly correlated contiguous spectral
bands. Only a subset of well selected bands would be sufficient
for urban materials classification [8]. A superspectral aerial
camera system dedicated to urban material classification could
then be designed from this band subset. It could offer some ad-
vantages compared to most hyperspectral sensors, combining
the use of suitable spectral bands for a specific application with
a higher spatial resolution and a larger swath. It would also be a
photogrammetric system, enabling to capture multistereoscopic
images and to derive Bidirectional Reflectance Distribution
Function (BRDF) models.
In previous work [9], an automatic band selection framework
was used to select optimal band subsets for urban materi-
als classification. Experiments were performed on data sets
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generated from material reference reflectance spectra from
available spectral libraries. This work was performed for a
fixed spectral band width. However, wider bands enable to
collect more photons and thus to limit noise and to increase
spatial resolution, but with the risk of a loss of discriminative
information.
This new study investigates the optimization of spectral band
width. The exploratory hierarchical approach from [10] is
used, building a hierarchy of groups of adjacent bands and
performing band selection at each level of this hierarchy.

II. BAND EXTRACTION

Hyperspectral imagery, generates huge data volumes,
consisting of hundreds of contiguous spectral bands being
highly correlated to each other. Dimensionality reduction
strategies aim at reducing data volume minimizing the loss of
useful information. They belong either to feature extraction
or feature selection categories. Feature extraction methods
(e.g. Principal Component Analysis) consist in reformulating
and summing up original information, reprojecting it in
another feature space. On the opposite, feature selection (FS)
methods applied to band selection select the most relevant
band subset (among the original bands of the hyperspectral
data set) for a specific problem. As hyperspectral adjacent
bands are very correlated to each other, band extraction, that
is to say the definition of an optimal set of spectral bands
optimizing both their width and position along the spectrum,
can be considered as intermediate between feature extraction
and individual band selection. Band selection/extraction
approaches enable not to loose the physical meaning of
the selected bands. They are adapted to the design of
multispectral or superspectral sensors dedicated to specific
land cover classifications for which only a limited spectral
band subset is relevant.

The approach used in this paper (see fig. 1) is described
in [10]. It is an exploratory one consisting in first building a
hierarchy of groups of adjacent bands. Then, band selection
is performed at each level of this hierarchy. The hierarchy
of groups of adjacent bands is used as a constraint for band
extraction and a way to limit the number of possible band
combinations, contrary to some existing approaches such as
[11] that extracts optimal bands according to Jeffries-Matusita
(JM) measure using an adapted optimization method or [12]
that directly uses a genetic algorithm to optimize a wrapper
score.

A. Hierarchical band merging

The first step of the proposed approach consists in building
a hierarchy of groups of adjacent bands, that are then merged.
The hierarchical band merging approach is bottom-up, starting
from the original individual bands, and gradually merging
adjacent bands according to a merging criterion. More details
about the algorithm can be found in [10].

A spectra approximation error [10] was used as merging
score. It aims at preserving the shape of the spectra and
relies on [13]’s method to decompose spectra into piece-wise
constant functions (fig. 2). Thus, adjacent bands are merged
aiming at minimizing the reconstruction error between the

Gradually merge adjacent bands
merging criterion = error between original spectra and 
their reconstruction by piece-wise constant functions

Hierarchy of merged bands

Select n merged bands per hierarchy level

A subset of n merged bands per hierarchy level

Fig. 1. Proposed band extraction approach

original and the piece-wise constant reconstructed spectra.

Fig. 2. Left: merged bands (black lines) superimposed on the original spectra.
Right: piece-wise constant reconstructed spectra for these merged bands

B. Band selection per hierarchy level

To optimize spectral configuration for a limited number
of merged bands, band selection was performed at each level
of the hierarchy of merged bands: a subset of a fixed number
of merged bands was selected at each level of the hierarchy.
The used FS score is the one used in [9]: it is a wrapper score
relying on Random Forests classifier and taking into account
classification confidence.
It was here optimized at each level of the hierarchy using
a modified version of Sequential Forward Floating Search
(SFFS) [14] presented in [10]. The band merging hierarchy is
considered within the FS process in a bottom-up approach:
the band subset selected at the previous lower level is used
as an initial solution when performing band selection at a
new level of the hierarchy of merged bands. The less relevant
band according to the FS score is then removed and classic
SFFS is performed.

III. DATA SET

Spectral optimization was performed from a library of ref-
erence spectra of urban materials. These spectra were collected
from several available existing spectral libraries listed below.

• ASTER Spectral Library 1 [15]

• SLUM 2 [5] collected in London.

• MEMOIRES 3 [16] and ONERA data : mostly col-
lected in Toulouse (France).

1http://speclib.jpl.nasa.gov/
2http://LondonClimate.info/LUMA/SLUM.html
3http://www.onera.fr/dota/memoires



• Santa Barbara libraries 4 [8], [6] collected (only
field measures) in Santa Barbara.

• Ben Dor spectral library [17] collected in Tel Aviv

• DESIREX [18] collected in Madrid.

All collected spectra were integrated into a common data
base (DB), associating several attributes to each of them (e.g.
material class, variety, color, condition...), even though all such
information was not always available.

Only reflectance spectra concerning both the Visible Near
Infra-Red (VNIR) (400-1000 nm) and the Short Wave Infra-
Red (SWIR) (1000-2400 nm) spectral domains were kept.
The original spectral resolution of the spectra was comprised
between 1 and 10 nm. Bands concerned by atmospheric
absorption and other artifacts were removed.

Some classes were let aside from the DB, even if they can
be important in urban land cover. Though important, vegetation
was let aside since its discrimination from non vegetation is
easy and its more-in-depth characterization (e.g. species) was
intended to be studied later. Water can vary a lot depending on
depth and turbidity, and was let aside since few spectra were
available.

The number of available spectra per class varied a lot and
was generally not sufficient to correctly evaluate intra-class
variability. To cope with this insufficient number of available
spectra, a random multiplicative factor was simply applied to
reference spectra in order to generate more synthetic spectra
from the DB, partly simulating intra-class variability. The
proposed process to generate an experimental data set is
described in fig. 3.

Spectral data 
base

Query file defining
 a class XXXX

Ex : RedTile 
Class=tile  
Colour=red Select spectra corresponding to the query

n spectra
to generate

Select randomly n spectra among selection

Simulate class variability
Apply random multiplicative factor to spectra

Resample spectrally
Remove bad bands

Desired spectral 
resolution

n spectra for class XXXX

Fig. 3. Synthetic spectra collection generation scheme

Experiments were performed for the next 9 items legend:
Slate - Asphalt - Cement/concrete - Gravel - Metal - Stone
pavement bricks - Shingle - Bare ground - Tile.
It consisted in the most common materials in the database
and to other important classes (e.g. slate) frequently present
in urban areas. In order to perform spectral optimization, a
data set was generated from the data base according to this
legend. It contained 100 training spectra and 500 test spectra,
resampled at a 10 nm spectral resolution ranging from 420 to
2400 nm.

4http://www.ncgia.ucsb.edu/ncrst/research/pavementhealth/urban/

IV. RESULTS

A. Hierarchy of merged bands

The hierarchy of merged bands is presented in fig. 4.
Bands from 1150-1250 nm, 1500-1700 nm and 2100-2150 nm
domains tend to be merged early, since the reference spectra
of most classes are quite flat there. Conversely, bands from
420-600 nm and 2250-2350 nm domains are merged later.

Even though it is intended to be used to select an optimal
band subset, this hierarchy of merged bands can also be a way
to explore several band configurations with varying spectral
resolution, that is to say with contiguous bands with different
bandwidths. These configurations were evaluated considering
the classification performance (measured by Kappa, mean and
minimum F-Score among all classes) reached using a RBF
SVM classifier. Results are presented on fig. 5: performances
reached for several configurations are quite equivalent to the
original spectral resolution, with quality rates being slightly
increased or decreased but remaining in the same magnitude.
The performance is decreased for configurations of less than
90 merged bands, corresponding to the late fusion of original
bands from 2250-2350 nm. But it is then improved for config-
urations of less than 40 bands corresponding to the fusion of
the last original visible bands. Lower performances between
these two events correspond to a over-representation of visible
bands among these spectral configurations. Last, classification
performance decreases strongly for spectral configurations of
less than 22 bands, i.e. for configurations consisting of too
wide bands leading to a strong loss of useful information.
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Fig. 4. Hierarchy of merged bands. Vertical black lines correspond to the
border between merged bands (the higher in the hierarchy, the lower number
of bands).
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Fig. 5. Classification performance of the spectral configuration corresponding
to the different hierarchy levels, before band selection.



B. Selection of merged bands per hierarchy level

As 10 bands were shown to be sufficient [9], subsets of 10
merged bands were selected at each level of the hierarchy. They
are shown on fig. 6. Selected bands are quite stable in some
spectral domain (in visible and 1500-2400nm SWIR domain),
but vary more in near infrared (750-1050 nm). These different
band subsets were also evaluated considering the classification
performance reached using a RBF SVM classifier. Results
are shown on fig. 7. No strong improvement was observed
using merged bands: quality rates slightly increased for some
configurations, or decreased for other ones. However, clas-
sification performance remains within the same magnitudes
(<1%). Thus, it is possible to use bands wider than the original
10 nm width.
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Fig. 6. Selected band subsets at the different levels of the hierarchy. Each
line corresponds to a level in the hierarchy of merged bands.
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Fig. 7. Classification performance of the spectral configuration corresponding
to the different hierarchy levels, before band selection.

V. CONCLUSION

Spectral optimization was performed in the context of
designing a superspectral sensor dedicated to urban material
map classification. An exploratory approach was used, building
a hierarchy of merged bands and performing band selection at
each level of this hierarchy. It enabled to study several spectral
configurations. 9 common urban materials were considered.
Experiments have shown it is possible to some extent to use
wider bands. Indeed classification performance reached using
band subsets involving merged bands remain within the same
magnitudes than using the original (10 nm width) bands. This
is important since wider bands enable to collect more photons
and thus to limit noise and increase spatial resolution.
In this study, the variability of some classes could not be
completely considered since they were represented by few
spectra. Thus obtained quantitative evaluations are optimistic
and must be considered carefully. New urban material spectra

measurements should be integrated in the data base. Experi-
ments will also be carried out using aerial hyperspectral scenes
to bring more realistic evaluation results, since such data will
be perturbed by sensor and atmospheric noise, while in this
paper only clean reflectance data measured on the field or in
laboratory were used.
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