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ABSTRACT:

The 3D reconstruction of similar 3D objects detected in 2D faces a major issue when it comes to grouping the 2D detections
into clusters to be used to reconstruct the individual 3D objects. Simple clustering heuristics fail as soon as similar objects
are close. This paper formulates a framework to use the geometric quality of the reconstruction as a hint to do a proper
clustering. We present a methodology to solve the resulting combinatorial optimization problem with some simplifications and
approximations in order to make it tractable. The proposed method is applied to the reconstruction of 3D traffic signs from
their 2D detections to demonstrate its capacity to solve ambiguities.

1. INTRODUCTION

Traffic signs are important road features that provide nav-
igation rules and warnings to drivers. Their detection and
identification in image is largely investigated by the ADAS
(Advanced Driver Assistance System) research community
since the 90s. Many different pattern recognition techniques
are applied for this purpose. A recent state-of-the art in this
field can be found in the paper presented by (Fu and Huang,
2010). Most of the traffic sign extraction systems deal with
detection and classification of signs in single images. Some
systems integrate the detection and classification in a track-
ing mode (Fang et al., 2003, Lafuente-Arroyo et al., 2007,
Meuter et al., 2008). Consequently, more reliable decisions
can be made using multi-frame rather than single-frame in-
formation. Overall, there is a large amount of research work
on detection and classification of traffic signs using single or
multi-frame image data. In contrast, fewer authors investi-
gated 3D reconstruction and localization of traffic signs, al-
though, it is required for several applications:

• Road inventory and update,

• Visibility analysis in urban areas,

• Virtual reality and 3D city modeling,

• Vision based positioning using visual landmarks.

1.1 Previous works

The problem of 3D traffic sign reconstruction from multiple
images acquired by a Mobile Mapping System (MMS) was
first investigated by (Timofte et al., 2009). Plausible corre-
spondence between 2D detections of traffic signs on different
∗Corresponding author.

images are computed based on geometric and visual consis-
tency criteria. A 3D traffic sign hypothesis is then generated
for each consistent pair of signs. Finally, a Minimum De-
scription Length (MDL) approach is used to select an opti-
mal subset of 3D traffic sign hypotheses. The method reaches
95% of correct reconstruction rate with an average localiza-
tion accuracy of 24cm, which can deteriorate to 1.5m in
some cases.

An inventory system based on stereo vision and tracking was
also developed for traffic sign 3D localization (Wang et al.,
2010). Pairs of corresponding 2D detections of traffic signs
are deducted from tracking them in successive images. Two
stereo-based approaches called single-camera (stereo from
motion) and dual-camera (rigid stereo base) are studied. Traf-
fic sign localization accuracy varies from 1− 3m for single-
camera to 5− 18m for dual-camera.

The localization accuracies obtained by aforementioned meth-
ods (24cm to a few meters) may be sufficient for road database
generation where traffic signs should be associated to road
sections. However several applications such as vision based
positioning using road landmarks (Li and Nashashibi, 2010)
and high scale 3D city modeling (Früh and Zakhor, 2004,
Cornelis et al., 2008) may require higher accuracies. To
tackle this issue (Soheilian et al., 2013) developed an im-
age based system for traffic sign reconstruction reaching sub-
decimetric accuracy. The method is efficient even in dense
urban areas where traffic signs are not necessarily in stan-
dard positions in relation to road axis. However, in such
dense areas, ambiguities may occur in the clustering of 2D
detections (grouping the 2D detections corresponding to the
same 3D sign). An example of such ambiguity is given in
Figure 1 where a bad clustering can cause both a decrease
in reconstruction accuracy and an omission. The aim of this



paper is to propose a generic framework to handle such am-
biguities. The scope thus goes way beyond the application
to traffic sign as our methodology can be applied more gen-
erally to disambiguate the 3D reconstruction of similar ob-
jects (motion capture trackers, crowds, animal swarms, par-
ticle clouds...) from 2D detections.

Figure 1: Clustering ambiguity: Two 3D signs (A, B) and six
2D detections (1-6). The correct clustering is (1,2,3) (4,5,6)
but a greedy approach will usually give (1,2,3,5,6) (4) leading
to a poor reconstruction of sign A and an omission of sign B
that cannot be reconstructed from a single image.

1.2 Positioning

In the aforementioned 3D reconstruction approaches, this clus-
tering problem is handled differently:

• The MDL approach of (Timofte et al., 2009) is lim-
ited to pairwise matchings, in which case a global op-
timum can be obtained by Integer Quadratic Program-
ming (Leonardis et al., 1995). Conversely, we are trying
to exploit as many views as possible in order to increase
the accuracy of 3D reconstruction.

• (Wang et al., 2010) track the detections in image se-
quences. If the same sign is seen by different cameras
of the mobile mapping system or if the tracking fails
(because of occlusions for instance) it might be recon-
structed multiple times.

• (Soheilian et al., 2013) iteratively groups the 2D detec-
tions in a greedy manner then ensures unicity of attri-
bution (a 2D detection cannot be used to reconstruct
more than one 3D sign). This heuristic does not ensure
global optimality as (Timofte et al., 2009) does, but al-
lows grouping more than 2 signs which helps enhancing
the precision of the 3D reconstruction.

The aim of this paper is thus to propose a generic approach in
a well justified theoretical framework to solve this clustering
problem by exploiting the geometric consistency though a
dissimilarity metric. Section 2. poses this clustering problem
and proposes a method to solve it. Section 3. presents the
application of our combinatorial clustering to the problem
of 3D reconstruction of similar objects from their detections
then specifies it to polygonal traffic signs. Finally we will
conclude and open perspectives in Section 4.

2. COMBINATORIAL CLUSTERING

Combinatorial clustering is the generic tool that we introduce
to solve the problem of reconstructing similar objects. The
major lock is that it is very hard to know if two 2D detections
correspond to the same 3D object, so we need a measure on
the compatibility of 2D detections that is not a simple aggre-
gation of a pairwise measures.

2.1 Problem formalization

In this section, we will call:

• Nn = {1, ..., n} the first n positive integers

• O = {oi}i∈Nn : the n objects oi that we wish to clus-
ter. For traffic signs, objects are the 2D detections and
clusters corresponds to the 2D signs used to reconstruct
a single 3D sign.

• Part(O) the set of parts of O: Part(O) = {S|S ⊂
O}

• P(O) the set of partitions of O:
P(O) = {{S1, ..., Sm}|Si ∈ Part(O)/∅ and Si ∪
Sj = ∅ and

⋃
Sj = O}

• |S| the number of elements in the set S (cardinal).

Let D : Part(O) → R+ be a measure of the dissimilarity
of a subset of objects. D should satisfy:

1. ∀i ∈ Nn, D({oi}) = 0: Singletons (individual ob-
jects) are not dissimilar.

2. S1 ∩ S2 = ∅ ⇒ D(S1 ∪ S2) ≥ D(S2) +D(S2): the
dissimilarity of a set is larger that the dissimilarity of
any of its partition (or at best equal).

These two conditions imply that D increases when adding a
new object to a set:

D(S ∪ {oi}) ≥ D(S) +D({oi}) = D(S)

Most measures typically used for clustering satisfy these two
conditions. D implies naturally a measure over P(O):

D({S1, ..., Sm}) =
∑
j

D(Sj)

Making no assumptions on the number of clusters, cluster-
ing should find the partition that minimises D over P(O).
To avoid the trivial solution of making only singletons (in
which case the total dissimilarity is 0), we should however
also minimize the number of clusters in the partition, such
that we pose the problem of combinatorial clustering as find-
ing:

argminP∈P(O)E(P ) = |P |+D(P ) (1)

We will refer to E as the energy to be minimized. D should
be chosen or scaled such that merging two subsets S1 and S2

should be favoured if D increases by less than 1 (D(S1 ∪



S2) < D(S1) +D(S2) + 1) because in this case the energy
will decrease:

E({S1∪S2, S3, ..., Sm}) = m−1+D(S1∪S2)+

m∑
j=3

D(Sj) <

E({S1, S2, ..., Sm}) = m+D(S1) +D(S2) +

m∑
j=3

D(Sj)

For 3D traffic signs reconstruction, D can be the residuals of
a reconstruction of a sign from the 2D detections normalized
by an estimate of the uncertainty on the image orientations
(cf Section 3.2).

The problem posed above is very generic and can be applied
to a broad variety of problems:

• Points clustering: the objects are points in Rn and the
dissimilarity is the variance of a subset of these input
points.

• Unsupervised classification: same as above with a vec-
tor of features.

• Shape detection (such as RANSAC, Hough): the ob-
jects are points in Rn and the dissimilarity is the sum of
residuals of a least square estimate of a subset of point
by the shape to detect.

• Reconstruction of similar 3D shapes: objects are 2D de-
tections of the similar 3D shapes and the dissimilarity is
a normalized sum of residuals of the 3D reconstruction
of an object from a subset of detections (cf Sections 3.1
and 3.2).

We will now propose a methodology to solve this combinato-
rial clustering problem, that is to find a minimum (or at least
a good approximation) of (1) over all possible partitions of
the set (O) of input objects to cluster. To our knowledge, the
numerous clustering methods that have been developed in the
fields of computer vision and machine learning mainly deal
with bivariate similarity measures (the dissimilarity measure
is only defined for a pair of object), such that the dissim-
ilarity of a set is sum of the pairwise dissimilarities of its
constituents. For our specific problem, such approaches are
insufficient as a very high similarity can be coincidental for
detection corresponding to different 3D objects. This is why
we investigated means to solve this more general clustering
problem.

2.2 Compatibility graph

The number of partitions of a set of n elements is the Bell
number |P(O)| = Bn that increases (very roughly) as nn

which is even faster than exponential. Minimizing (1) over
all possible partitions of the set (O) thus cannot be done by
brute force in reasonable time for more than 20 objects (for
which B20 ≈ 5.1013) while we were regularly confronted to
problems of size exceeding 100 in the context of road sign
reconstruction. In this paper, we propose heuristics to make
this problem tractable for large number of objects.

The first simplification of this problem is to list pairs of in-
compatible objects and forbid putting them in the same set.

In other terms, we propose to find a criterion ensuring that
two objects o1 and o2 are not in the same part of the optimal
solution. We found that the criterion D({o1, o2}) > 2 gives
such an insurance, because in this case:

E({o1, o2, o3, ..., om}) = 1 +D({o1, o2, o3, ..., om}) ≥

1+D({o1, o2})+D({o3, ..., om}) > 3+D({o3, ..., om}) =

E({o1}, {o2}, {o3, ..., om})

This result has a simple geometric interpretation: the mini-
mization ensures that the clusters have a maximum radius of
1 (in normalized dissimilarity), so two objects further than 2
cannot belong to the same cluster.

If more is known onD, a finer incompatibility criterion should
be investigated (cf Section 3.2 in the case of 3D traffic signs
reconstruction). This incompatibility relationship allows us
to build an object compatibility graph GC where nodes are
objects and an edge exists between two nodes if the corre-
sponding objects are compatible (cf Figure 2, last page). Ac-
ceptable partitions will then be partitions of this graph into
cliques (subsets of the graph where each node is connected to
each other, or equivalently sets of objects all compatible one
with another). This approximation decreases drastically the
number of possible partitions, especially if the compatibility
criterion is well chosen. It also naturally splits the problem
into smaller problems given by the connected components of
GC that can be processed separately (in different threads and
on different machines).

Finding the optimal partitions of a connected component C
of a graph in cliques can be done in the following way:

1. List all the cliques Ck of C and compute their energies
E(Ck).

2. Build a clique compatibility graph CC where the nodes
are the enumerated cliques Ck, and there is an edge iff
cliques are non intersecting (intersecting would mean
the same object belongs to two clusters).

3. Find the maximal clique of minimum energy in C. A
maximal clique of C corresponds to a partition of C in
non overlapping cliques. The standard being maximum
weighted clique, we will simply take the opposites of
the individual clique energies.

Note that we handle two different types of cliques:

1. Cliques of C that are sets of objects compatible one with
another (potential clusters).

2. Maximal cliques of CC that define partitions of C in
cliques (of the previous type).

2.3 Clique enumeration

We propose a simple and memory efficient approach to build
the set of all the cliques of a connected component C, illus-
trated in Figure 3. It relies on creating a tree with the empty
set as root, each tree node tk is labelled by a graph node ni

and corresponds to the clique Ck containing ni and all the
labels of the ancestors of tk (tree nodes above tk):
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Figure 3: A simple graph (top) and its clique tree (bottom).
Each red node tk corresponds to the clique of the graph de-
fined by listing the nodes ni from ∅ to tk

1. Create the tree root t0 labelled with ∅ = C0 and add
one child to this root labelled with ni for each node ni

of G.

2. For each tree node tk, labelled with ni list all the nodes
nj (j > i) of C that are connected to all nodes inCk and
add a child to tk labelled with nj for each of them. The
criterion (j > i) ensures that each clique is enumerated
only once (with nodes in increasing order).

3. Iterate step 2 recursively on the new tree nodes until no
new node is found.

The energy E(Ck) can be computed efficiently and stored
on each tree node during this construction, especially if the
update of the dissimilarity measure D(Ck) is a simple up-
date of the dissimilarity of a sub-clique of Ck (given by the
father node of tk). For large, highly connected graphs, this
construction may exceed the memory size of the machine.
In our experiments, this happens for connected components
with more than 200 nodes and 3000 edges. We propose a
solution to that problem in Section 2.5.4.

2.4 Maximum weighted clique

The maximum weighted clique problem is rather classical
and efficient implementations exist to solve it, such as Cli-
quer (Niskanen and Östergård, 2003). However, the num-
ber of enumerated cliques grows rapidly with the number
of nodes and edges of C, which makes the maximal clique
problem too long to run. We can however give a certain
time budget to the algorithm and ask it to give the best so-
lution found after this amount of time if the optimal solution
cannot be found. In this case, we will compare the solu-
tion with a greedy search (iteratively add the best clique not
overlapping previously added cliques) and take the best. In
extreme cases (more than 105 enumerated cliques) even the
graph construction may exceed memory size so we directly
choose the greedy solution.

2.5 Improvements

For clarity, we have only given the core of the method in
the previous sections. In our implementation, we have added
several useful improvements to enhance the quality of the re-
sult in the cases where optimality cannot be guaranteed and
reduce the computing time and memory footprint of the al-
gorithm.

2.5.1 Singletons removal By definition, singletons have
an energy of 1 because their disparity is null. As singletons
are cliques, they should be added to the clique compatibil-
ity graph CC , which increases its size by n. However, a
simple modification of the energy allows to bring their en-
ergy to 0 making singletons indifferent (they can be added
or not to the solution without modification to the energy):
E(S) = 1 + D(S) + |S| Because

∑
|S| over a partition

is exactly the number n of objects, this only corresponds to
adding the constant n to the partition energy which will not
change its minimum. This way, if an object does not appear
in the maximum weighted clique, it simply means that it is a
singleton in the corresponding partition.

2.5.2 Local optimality The incompatibility criterion be-
ing quite weak, the compatibility graph GC might have large
cliques that require to be cut in several clusters to optimize
the energy. If a clique listed by the method of Section 2.3 has
a partition that has a better energy, then we are sure that it
won’t belong to the optimal solution, so we should not add it
to the clique graph CC . This way we can reduce the size and
complexity of CC without loss of generality. We call "locally
optimal" a clique for which no partition has a better energy,
and we add to CC only such locally optimal cliques.

Computing local optimality can be done by computing an
"optimal energy" which is the energy of the best partition of
a clique. A clique is then simply defined locally optimal if
its optimal energy is equal to its energy. This can be done by
increasing clique size:

• A pair {o1, o2} is locally optimal iff

E({o1, o2}) = 1+D({o1, o2}) < E({o1}, {o2}) = 2

⇔ D({o1, o2}) < 1

Define its optimal energy as

Eopt({o1, o2}) = min(E({o1, o2}), E({o1}, {o2}) = 0)

• For a n-clique C, compute the minimum energy:

Ebipart(C) = minC1∪C2=C,C1∩C2=∅Eopt(C1)+Eopt(C2)

over all bipartitions of C (there are 2n−1 − 1). The op-
timal energies of the two parts C1 and C2 have already
been computed as their sizes are < n and this compu-
tation is done by increasing clique size. The optimal en-
ergy is then simplyEopt(C) = min(E(C), Ebipart(C).
C is locally optimal if the min is E(C).

This local optimality has two benefits:

1. It reduces the complexity of the maximum weighted
clique computation



2. It ensures that the found solution (even if not optimal)
only contains clusters that should not be split. In partic-
ular, it ensures that the ambiguity problem mentioned
in Figure 1 will be solved even if a greedy algorithm is
used, because the clique (1,2,3,5,6) will not be locally
optimal (its partition (1,2,3)(5,6) is better) so it will be
removed from the clique graph beforehand.

2.5.3 Useless edges removal The cliques compatibility
graph has a number of edges that increases very rapidly. For-
tunately, a simple criterion allows us to remove some useless
edges: if merging two clusters gives a better energy, then the
corresponding edge is useless as we know it won’t be part
of the optimal solution. If as a result, CC is not connected
any more, then each connected component can be processed
separately which reduces both computing time and memory
footprint.

2.5.4 Problem splitting In practice, the method described
above is only tractable for connected components containing
up to 150-200 objects. If the compatibility criterion is suffi-
ciently good, connected components might have such reason-
able sizes even with a much larger number of input objects.
However, if the problem is too complex and the compati-
bility criterion not discriminative enough, connected com-
ponents larger than this size may appear. In this case, too
many cliques are listed and the cliques graph CC becomes so
large that it cannot even be stored in memory (Cliquer stores
graphs in a matrix so a graph with n nodes takes roughly a
memory space of n2).

The solution that we propose is to find the optimal solution
on subsets of CC then merge these solutions. We rely on the
strong assumption that the optimal solution of a subset of the
problem is a subset of the optimal solution of the full prob-
lem, which is only true for some dissimilarity measures, and
an approximation necessary to make the problem tractable in
other cases. We split the input set {oi}i∈Nn into two sets of
objects with even and odd indices. The two optimal partitions
P1 and P2 of these subsets are computed with the method de-
scribed above. To merge the results we build a solution merge
graph GM where the nodes are pairs {p1i , p2j}, p1i ∈ P1, p

2
j ∈

P2 for which E(p1 ∪ p2}) < E(p1, p2). This means that a
node represents the fact that merging the two parts reduces
the energy. Two such merges {p1i , p2j} and {p1i′ , p2j′} will be
called incompatible iff i = i′ or j = j′, that is if they share
two parts, because in that case applying the two merges will
merge together two parts from an optimal solution, which is
against our assumption.

Once again, we find the optimal merge by finding the min-
imum weighted clique of the merge graph GM , where the
weights are the energy reductionsE(p1∪p2})−E(p1, p2) <
0. This ensures to find the optimal compatible merges be-
tween parts of the two solutions.

The splitting/solution merging process described in this sec-
tion can be applied recursively if the subsets are still too
large.

2.5.5 Combinatorial Gradient descent Because we need
to do some approximations if the problem is too large (prob-
lem splitting, not waiting for the end of maximal clique com-
putation), we are in general not guaranteed to find a global

minimum. This is why, in such cases, we can try to improve
locally the solution by trying to change the class of individ-
ual objects, and validating the change if the energy decreases.
This can be done in a greedy manner until no cluster change
decreases the energy. These operations do not change the
number of clusters but only their composition.

3. RESULTS

The combinatorial clustering defined above is very general
and requires only a normalized measure of dissimilarity on
any subset of objects, and optionally a finer criterion to dis-
card pairs of objects. We first applied it to (synthetic) particle
reconstruction in order to validate it (Section 3.1) then to our
initial problem of traffic sign reconstruction (Section 3.2).

3.1 Particle reconstruction

We call particle reconstruction the problem of reconstructing
individual (and indistinguishable) 3D points (particles) from
their 2D projections in images. More precisely, we generate
N3D such particles Pi in the unit cube (N3D = 10 in our ex-
periments), and place Ncam virtual cameras around the cube
in which we project the particles. Each 2D projection of a
particle Pi in an image j corresponds to a 3D line Lj

i , so
somehow our clustering problem corresponds to finding the
optimal way to intersect these lines. For a given subset S of
lines, the optimal intersection I∗ is obtained by minimizing:

ES(I) =
∑
i

∑
j

d2(Lj
i , I)

over all points I ∈ R3, where d is the Euclidian distance.
The minimum I∗ is easy to compute using a closed form for-
mula, and we define the dissimilarity of subset S as D(S) =
ES(I

∗)/Eref . To take into account the uncertainties that
arise from both the (intrinsic and extrinsic) calibration and
detection in the real world, we introduce a Gaussian noise of
variance σ on the three coordinates of the camera centres, im-
plying roughly a d2av = 2.7σ average particle to line squared
distance. For a correct cluster of size n, we can expect resid-
uals of ES(I

∗) ≈ nd2av , thus a good choice is Eref = 4σ
such that objects adding more than 1.5d2av to the disparity
of a cluster will be rejected, while others will be favoured.
Experimental results are presented in three tables that give:

• Prec (%): Precision of the reconstruction=number of
good reconstructions/number of reconstructions, a re-
construction being considered good if it is at less than
dav from the input particle.

• Rec (%): Recall of the reconstruction=number of par-
ticles correctly reconstructed/N3D , same criterion for
correct reconstruction.

• Dupl: Number of duplicates (multiple reconstructions
for one particle=over-segmentation). We do not count
under-segmentation (one reconstruction for multiple par-
ticles) as it will result in a decrease in Rec.

• Acc (cm): Accuracy=average distance between a par-
ticle and its corresponding reconstruction (in cm). Each
line of the tables corresponds to one experiment for which



the 10 particles were randomly generated. The diffi-
culty of the problem depending on the minimum dis-
tance between two particles Dmin (in cm), we system-
atically indicate it. Another alternative would have been
to average the results on numerous experiments, but that
would not be much more informative as each experi-
ment might have a very different difficulty depending
on the exact configuration of particle.

Ncam Dmin Prec Rec Dupl Acc

2 11 71 70 0 7.2
3 11 87 80 0 4.3
4 15 90 90 0 4.4
5 19 100 90 0 3.6
7 13 100 100 0 3.6
9 13 100 100 0 4.4
12 22 100 100 0 3.2
15 12 100 100 3 2.6

Table 1: Results on synthetic dataset for increasing Ncam

with N3D = 10, σ = 4cm and Eref = 4σ.

Table 1 shows that with only two cameras, the problem is
too ambiguous to be well solved. Additional cameras help
disambiguating (5 are sufficient in this setting). The accu-
racy of the reconstruction is also increased with more cam-
eras, which was one of the motivations of this work (mak-
ing large clusters improves accuracy). However, increasing
the number of cameras also increases drastically the potential
false detections (sets of 3D lines coincidentally all close to a
point in space where no particle is present). Our algorithm
still proves quite robust to that (precision stays high), even if
the combinatorial difficulty increases rapidly with the num-
ber of cameras (problem required splitting above 7 cameras).
This combinatorial explosion is probably the reason for the 3
splits (2 reconstructions for a single particle) occuring with
15 cameras. Finally, we observe as expected that the accu-
racy increases with the number of cameras used for constant
uncertainty on the camera positions.

Note that the problem that we are trying to solve here is very
hard as the average line to particle distance is 6.6cm for σ =
4cm and the minimum particle to particle distance between
10 and 20cm, so for a line passing between two particles, the
attribution may be ambiguous even for a perfect algorithm.

σ Dmin Prec Rec Dupl Acc

1 13 100 100 0 0.9
2 13 100 100 0 1.8
4 17 100 90 2 4.2
8 26 78 80 2 9.5

Table 2: Results on synthetic dataset for increasing σ (in
cm), Ncam = 5 and Eref = 4σ

Table 2 shows that when the uncertainty on camera orienta-
tion increases, the problem becomes more ambiguous. The
problem is perfectly solved if uncertainty is sufficiently low,
then fails for higher uncertainties. For this test with 5 cam-
eras, the limit occurs around σ = 4cm which is roughly a
theoretical limit as stated above. Increasing the number of
points has the same impact as increasing σ as the point den-
sity increases which is equivalent to scaling down.

Table 3 investigates the choice of the dissimilarity normaliza-
tion factor Eref . Choosing Eref below 2σ generates many

Eref Dmin Prec Rec Dupl Acc

σ 16 9.5 20 0 5.1
2σ 20 69 90 0 4.3
4σ 16 90 100 0 4.5
6σ 19 89 90 1 5.0

Table 3: Results on synthetic dataset for increasing Dref

with σ = 4cm, Ncam = 5

small compact clusters that do not necessarily correspond to
particles (they might be coincidental with so many lines).
Conversely, large values will under-segment (one reconstruc-
tion for multiple particles), which lowers both precision and
recall. Moreover, high Eref values make the problem more
difficult as the consistency graph becomes much denser, so it
has much more cliques, which decreases the quality of the re-
sult for the maximum clique computation that has a constant
time budget, and increases computation time for the local op-
timality.

For all the experiments, we used a time budget for maximal
clique computation of 30s which proved sufficient in most
cases. The computation time thus mainly depends on the lo-
cal optimality computation. For 100 nodes, this computation
takes from a minute to 10 for very dense graphs. For lager
sizes, we recursively split and merge the component, so the
computing time will be roughly linear, plus the time bud-
get allocated to each merge (which are also maximum clique
problems).

3.2 Application to 3D traffic sign reconstruction

To apply our methodology, we simply average the dissimi-
larity from previous section over the sign corners (a specific
measure should be used for circular signs). Note that the re-
construction used is constrained by the shape of the 3D sign
(square, equilateral triangle) in the same manner as (Soheil-
ian et al., 2013). For the normalization factor Eref , we esti-
mate that our geroreferencing system drifts of a few centime-
ters during the acquisition of images of a given sign. Given
the results of previous section, we assumed that Eref =
(20cm)2 was a good choice.

For the discarding criterion, we used the same constraints as
(Timofte et al., 2009) and (Soheilian et al., 2013):

• Geometric constraints:

– Epipolar geometry: both detected sign centers should
lie on the same epipolar line of the camera pair.

– Size: the size of resulting 3D traffic sign should
lie in some range (specified by a traffic sign refer-
ence document).

– Visibility: the resulting 3D traffic sign should face
both camera centers.

• Similarity constraint: both detected signs should have
the same visual characteristics.

We evaluated the reconstruction on a large dataset of 4800
full HD images acquired on a 1 km long path which resulted
in 1057 2D detections, from which 62 signs were recon-
structed. Only one sign from the ground truth was omitted
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Figure 4: An ambiguous clustering problem. Top: a greedy
heuristic generates a "ghost" 3D signs at C when reconstruct-
ing the real signs A and B. Bottom: our combinatorial clus-
tering successfully removed C, reattributing all 2D detections
to the correct 3D sign, also improving accuracy.

(1 False Negative) and two reconstructions had no counter-
part in the ground truth (2 False Positives, against 9 with a
greedy heuristic). Seven signs were duplicated. Most of the
"ghost" signs from the greedy heuristic of (Soheilian et al.,
2013) were eliminated as illustrated in Figure 4, validating
its practical interest. Processing time (for the combinatorial
clustering) was around 1 hour.

4. CONCLUSIONS

This paper proposed a general framework for combinatorial
clustering that can be applied in a wide range of contexts, in
particular to disambiguate the reconstruction of similar 3D
objects such as traffic signs. Even if our formulation of the
problem makes it hard to solve in complex cases, we pro-
posed several improvements that makes it tractable on most
cases that we encountered. Moreover our interlaced strategy
for splitting very large problems shows good performance
even if we cannot give guarantees that the resulting parti-
tion is optimal. Our experiments have shown a significant
improve compared to our previous greedy heuristic, with a
correct handling of most ambiguities. Thus we consider that
this work has overcome a significant difficulty inherent to the
problem of reconstruction of similar 3D object, which may
be applicable to other contexts. The major limit, inherent
to the problem, is the ratio between the precision of the de-
tection and the minimum distance between objects. When it
becomes too high, the problem becomes too ambiguous for a
correct solution to be found.

In the future, we plan on validating more finely the approx-
imations necessary to make the problem tractable, but also

on refining the criteria used to create the consistency graph.
For instance, we would like to make use of a 3D city model in
order to predict occlusions more finely in order to have a sim-
pler consistency graph. Finally, the complexity of the prob-
lem could be reduced if we track the signs for each camera,
in which case we would cluster not the signs but the series of
signs from tracking.
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Figure 2: Consistency graph for around 1000 triangular 2D traffic signs detections. Nodes are 2D detections of 3D signs, and an
edge exists if the detections corresponding ton the connected nodes are compatible (cf Section 2.2). Large components indicate
very ambiguous clustering situations. Our method aims at partitioning the connected components in a minimum number of
cliques of minimum dissimilarity.


