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ABSTRACT

Due to the large diversity of existing feature descriptors in content-
based image retrieval, the image contents can be better represented
by the joint use of several descriptors in order to explore their poten-
tially complementary characteristics. This paper presents and dis-
cusses a strategy for fusion of the different multidimensional features
involved, based on inverted multi-indices and dedicated to similarity
search. Image descriptors are quantized separately and efficiently
through dimension reduction techniques, before being combined in
the inverted multi-indices. To exhibit its effectiveness, the proposal
is evaluated on two datasets having different contents and sizes, fac-
ing several state-of-the-art approaches of image descriptor fusion.
The obtained results reconfirm that the joint use of several descrip-
tions improves similarity search, and show that our fusion proposal
outperforms other solutions, while manipulating lower or similar
volumes of features.

Index Terms— CBIR, image descriptors, fusion, dimensional-
ity reduction, inverted index.

1. INTRODUCTION

With the hasty growing of the media collection, it is imperative to de-
velop effectual search processes, such as Content-Based Image Re-
trieval (CBIR) to access voluminous, complex and unstructured data
efficiently. CBIR is used increasingly in order to organize, search
and share the image and video collections [1]. The extraction of dis-
tinguished features from an image dataset and the measure of the
resemblance between them is the core of CBIR. Hence, the key em-
phasis is on describing suitable image characteristics, which should
coincide with the users vision and perception of similarity of the
images [2] (i.e., to account for the gap between low and high-level
semantic concepts).

Nowadays, literature on image descriptors is very rich [1, 3, 4],
providing several families to describe different image characteris-
tics for different targets. It has already been demonstrated that com-
bining different descriptions is propitious to better describe image
contents. Several fusion approaches exist (see Section 2), therefore,
it is pertinent to investigate the best strategy for combining image
characteristics. Among all the existing solutions for describing im-
age contents and organizing the extracted features in order to deal
with large dataset, we focus on a recent approach called inverted
multi-index [5]. This method suggests a data structure and a strat-
egy to combine multidimensional features efficiently: it decomposes
the image descriptor space into n desired subspaces. Then, the best
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responses to a query in each subspace are retrieved and combined
into one response that ensures better result than the traditional ap-
proaches based on classical inverted indices.

In this work, we present a novel fusion method for efficiently
combining multiple descriptors for image retrieval, based on the in-
verted multi-index approach, but amended it in several ways. This
proposed approach allows to combine any number of multidimen-
sional image descriptors by integrating their responses to a query in
finer subdivisions.

This paper is organized as follows. Section 2 revisits the re-
lated works on fusion of descriptors for image retrieval, Section 3
describes the proposed methodology, Section 4 presents the experi-
ments performed to evaluate our proposal, followed by conclusions
in Section 5.

2. RELATED WORK

Recently, several techniques for fusion (combination) of image de-
scriptors have been proposed in the literature. Fusion can be inves-
tigated differently according to the involved descriptors, the strategy
of combination and the application targeted. In general, the exist-
ing fusion approaches can be categorized as early and late fusion
approaches [6, 7], which refers to their relative position from the
feature comparison or learning step in the whole processing chain.

Early fusion usually refers to the combination of the features into
a single representation before comparison/learning [7]. The most
widespread solution is to concatenate the feature vectors into a sin-
gle vector, such as in [8] with SIFT [9], HOG [10] and LBP [11] fea-
tures. Other approaches such as weight based color and shape early
fusion in local color pixel classification descriptor [12] and weight
based texture and color feature fusion [13] are proposed for image
retrieval.

Late fusion refers to the combination, at the last stage, of the
responses obtained after individual features comparison or learn-
ing [7]. When considering image retrieval, multiple ranked out-
puts of the multiple descriptors are aggregated to generate another
concluding ranked output. This method of fusion can be imple-
mented either score-based where it combines the different similar-
ities or distances from the query, or ranked-based which considers
the combination of the response ranks. The outputs to combine can
be weighted to give more importance to particular descriptors, by
fixing the weights a priori or, better, by learning them for a given
content [14]. A comparison between the most classical late fusion
approaches is discussed in [15, 16] for image retrieval. When con-
sidering classification, e.g. for image categorization, late fusion is
performed slightly differently: it usually involves a weighted voting
strategy from the outputs of the classifiers associated to the indi-
vidual descriptors, such as in [17], which exploits a panel of BoF



representations of low-level descriptors, associated to several Sup-
port Vector Machine (SVM) classifiers. More sophisticated learn-
ing strategies (i.e. multiple kernels, boosting) simultaneously learn
individual classifier and combination classifier weights [18, 19, 20].
Since they take place at different levels of learning, these approaches
are sometimes categorized as intermediate fusion [19].

In the aforementioned approaches, all the different descriptors
are exploited as the same level, however, some other methods, which
could be gathered under the name sequential fusion, consider one
descriptor as a filter before using another one on the remaining sub-
set of images or regions in the images. For example, in [21] such
a strategy was proposed for the fusion of Affine-SIFT, MSER and
color moment features. Similarly, in [22], global image descriptors
are first used for coarse similarity search, before exploiting more ex-
pensive local features in order to refine similarity search.

3. FUSION OF DESCRIPTORS WITH INVERTED
MULTI-INDEXES

This section is dedicated to the presentation of our proposal. In Sec-
tion 3.1, we revisit the approach proposed in [5] which our proposal
rests on, whereas Sections 3.2 and 3.3 describe our contributions.

3.1. The inverted multi-index

The introduction of inverted multi-indices [5] opens higher sparse
subdivision of the search space without affecting overall process-
ing time compared to standard inverted indexing. Product quantiza-
tion (PQ) [23] based method was proposed to improve the approxi-
mate nearest neighbor search [24]. Higher dimensional vectors are
split into low dimensional subspaces of Cartesian product. These
subspaces are quantized independently. The Euclidean distance be-
tween two vectors, which are epitomized by a subspace quantization
indices, is computed through quantized codes. The overall process
enhances the search quality by limiting the quantization noise. PQ is
integrated with inverted indexing in order to avoid exhaustive search,
hence it boots searching speed.

In inverted multi-indices [5], one high dimensional vector is de-
composed into n smaller dimension sub-spaces; then n PQ code-
books are computed by clustering each of the n sub-space sepa-
rately. It is constructed as a multi-dimensional table which contains
n lists of ordered codewords from the n corresponding codebooks. A
given query is split into the same sub-spaces and k nearest neighbors
(k nearest codewords), from the corresponding codebook, are com-
puted and stored in a list. These n lists of k-nn consist of codewords
with associated inverted indices, are merged using multi-sequence
algorithm [5] to generate final list comprises vector similar to the
query. This approach is depicted in Fig. 1.

3.2. Combination of different descriptors

Our methodology is based on the method presented in Section 3.1.
However, instead of decomposing one query vector into two equal
sub-vectors, here the query is represented with several image de-
scriptors, as illustrated in Fig. 1. The performed steps are:

1. A query image is represented by m descriptors (such as
SIFT [9], SURF [25], SC [26]), leading to m descriptions
of the content.

2. Then, m candidate lists of responses are built, where each list
contains the k nearest codewords to the respective query, their
respective distances and the set of associated images (we are
not considering repeated image identifiers).

3. Since the distances from different lists are related to their de-
scriptor space and characteristics, standard normalization is
applied by using the maximum and minimum distances of the
respective descriptor to them.

4. The candidate lists are combined through the multisequence
algorithm, as proposed in [5], which returns final lists that
consist of codewords and associated image ids sorted by their
increasing distances from the query.

5. A voting algorithm is proposed to compute the frequency of
the retrieved images. The voting algorithm generates a fre-
quency list that consists of image ids and associated frequen-
cies according to their occurrences. All the frequency lists are
summed up to generate a final frequency list that consists of
the most similar images ids retrieved for the query image.

This approach can be categorized as intermediate fusion because
the candidate lists, related to closest words for each descriptor, are
merged (and not the candidate lists of images, as with late fusion).

3.3. Feature dimensionality reduction

The joint use of different descriptors naturally leads to increase the
volume of manipulated features, and then to slow down the compu-
tational processes. This drawback can be addressed by exploiting
dimensionality reduction techniques, which decrease each multidi-
mensional description dimension to its half or fourth part, while
maintaining a good degree of accuracy, sometimes similar even
higher to the one of the original description. In addition, each di-
mensionality reduction technique can bring some particular advan-
tage: PCA [27] is able to remove noise from the descriptions, while
PLS [28] can add distinctiveness as it takes into account class cor-
relation. Consequently, we propose to use them to decompose the
multidimensional description into smaller subspaces, instead of sim-
ply splitting it into several parts as in [5]. Indeed, we think that this
alternative may conduce to establish finer subdivisions and then to
determine nearest neighbors better, in addition to reduce the amount
of features to manipulate.

4. EXPERIMENTS AND EVALUATION

This section presents and discusses, in Sections 4.2, 4.3 and 4.4, the
experiments conducted to evaluate our contributions, after having
presented the framework of evaluation used in Section 4.1.

4.1. Framework of evaluation

The experiments are conducted on two image datasets with different
sizes and contents:

• COIL DB: this dataset contains 600 synthesized images con-
taining 100 objects with different orientations and view-
points, from the well-known benchmark COIL-1001, synthet-
ically inserted on photographs as background (images with
heterogeneous and complex contents downloaded from Inter-
net). Examples are shown in first row of Fig. 2.

• Paris DB: it is a public benchmark2 consisting of 6412 im-
ages collected from Flickr by searching for 12 particular Paris
landmarks; see examples in second row of Fig. 2.

The image descriptors employed in our experiments are local de-
scriptors, suitable to retrieve objects in such datasets with cluttered

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php.
2http://www.robots.ox.ac.uk/∼vgg/data/parisbuildings/index.html.
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Fig. 1: Illustration of three different strategies for similarity search. For each one, three multidimensional words (colored circles) are distributed in the descriptor
space. An image content, rich in interest points, can overpopulate some clusters, therefore, those clusters (represented by green numbered squares) have a strong
impact on that image representation. In order to perform the task of finding the 3-NN for a given query point (yellow star), the three strategies proceed as
follows. (a) Classical inverted file identifies the cluster to which the query belongs and retrieves all its associated descriptions inside. (b) Inverted multi-index
subdivides the descriptor space into n subspaces (n = 2 here). Then the multi-sequence algorithm combines the nearest centroid to the query in each of
the n subspaces, selecting the descriptions related to all the best combinations of subspace centroids. However, overpopulating descriptions from one image
decreases the possibility of retrieving descriptions from other images with lower amounts of descriptions. (c) With our approach, fusion of inverted indices,
n descriptors are used to find images that match the query with more similar characteristics (here a 2D descriptor A and a 3D descriptor B). Each cluster
in a descriptor space represents only the nearest descriptions from each matched image (descriptions in hooped dotted circles). Furthermore, as n subspace
responses are combined, we are able to obtain a direct rank of the images that better match the query image. This rank represents the images that are similar in
all or most of all descriptor characteristics.

Fig. 2: Samples from two benchmarks used in our experiments.

contents. Among the descriptors tested, we concentrate on SIFT [9],
SURF [25] and Shape Context (”SC”) [26], which performed better
individually for these datasets. All the descriptions used are quan-
tized into words with the FLANN library hierarchical k-means3.

The approaches and descriptors are evaluated in terms of quality
of retrieval through precision and recall curves. Due to space limi-
tations, we only present their mean Average Precision (mAP) which
is a summarized measure of quality across the multiple queries by
averaging average precision.

4.2. Parameter settings and baseline

The two main parameters of the proposed approach are the codebook
size and parameter k of the individual k-nearest neighbor search
(step #2 in Section 3.2). We varied the codebook size in range
{25000,125000} for COIL DB and in range {500000,2000000}
for Paris DB, and obtained the best mAP with 50000 words for
COIL DB and 1500000 words for Paris DB, for the three used de-
scriptors. Similarly, parameter k was varied from 1-NN to 5-NN,
where 2-NN achieved the best results for all the descriptors and
datasets. These parameters are used by default in the rest of the
experiments.

To give a first insight into the proposal, we begin by evaluating
the original version of the inverted multi-index [5] completed with

3http://www.cs.ubc.ca/research/flann/

our strategy of image voting (step #5 in Section 3.2) on a single
descriptor, facing the classical approach based on Bag-of-Features
(BoF) with tf-idf scores [29]. Table 1 shows the mAP achieved on
the three descriptors used individually for both datasets.

Table 1: mAP results for individual descriptors.
BoF with tf-idf Inverted multi-index

Benchmark SIFT SURF SC SIFT SURF SC
COIL DB 0.10 0.09 0.10 0.55 0.44 0.53
Paris DB 0.09 0.08 0.08 0.43 0.48 0.39

Approach based on BoF with tf-idf achieves a lower precision
since this representation relies on a global description of the image
associated to a global similarity measure (usually the Euclidean dis-
tance), less robust to the complex scenes present in the two datasets.
Not surprisingly, the voting strategy of the inverted multi-index ap-
proach performs better since it searches for similar areas in different
images by comparing groups of words.

4.3. Reduction strategies and their fusion

In this section, we evaluate the methodology presented in Sec-
tion 3.3. The descriptors are used individually and each of them
is decomposed with PCA and PLS dimensionality reduction tech-
niques. On the two datasets, Table 2 shows the mAP obtained (i)
before any reduction, with the simple splitting strategy of [5] (col-
umn “Descriptor”), (ii) after reduction, again with the simple split-
ting strategy (column “Reduction”) and (iii) with the fusion of two
reduced descriptions (column “Fusion”). The sub-index and super-
index texts next to each descriptor indicate their original dimension
or their reduced dimension preceded by the technique used (e.g.
SURFPLS32 indicates that description SURF was reduced with PLS
down to 32 dimensions, and SCPCA12

PLS12 that description SC was re-
duced both with PCA and PLS down to 12 dimensions, before fusing
them with the inverted multi-index).



Table 2: mAP results with reduced descriptions and their fusion.
Descriptor Reduction Fusion

C
O

IL
D

B

SIFT128 SIFTPCA32 SIFTPLS32 SIFTPCA32
PLS32

0.55
0.47 0.45 0.58

SIFTPCA64 SIFTPLS64 SIFTPCA64
PLS64

0.47 0.46 0.59
SURF64 SURFPCA20 SURFPLS20 SURFPCA20

PLS20

0.44
0.36 0.33 0.43

SURFPCA32 SURFPLS32 SURFPCA32
PLS32

0.37 0.36 0.45
SC36 SCPCA12 SCPLS12 SCPCA12

PLS12

0.53
0.40 0.38 0.50

SCPCA18 SCPLS18 SCPCA18
PLS18

0.44 0.42 0.54

Pa
ri

s
D

B

SIFT128 SIFTPCA32 SIFTPLS32 SIFTPCA32
PLS32

0.43
0.47 0.43 0.49

SIFTPCA64 SIFTPLS64 SIFTPCA64
PLS64

0.48 0.42 0.49
SURF64 SURFPCA20 SURFPLS20 SURFPCA20

PLS20

0.48
0.45 0.44 0.49

SURFPCA32 SURFPLS32 SURFPCA32
PLS32

0.49 0.47 0.52
SC36 SCPCA12 SCPLS12 SCPCA12

PLS12

0.39
0.31 0.28 0.33

SCPCA18 SCPLS18 SCPCA18
PLS18

0.39 0.37 0.42

Irrespective of the dataset, the loss in precision is not propor-
tional to the percentage of dimension reduction applied for single re-
duction; it achieves slightly lower or similar precision than with the
original description. The column “Fusion” shows that the fused re-
duced descriptions of the original descriptor is able to achieve better
results than the individual parent descriptions. This is due to the fact
that the fused descriptors represent two complementarity subspaces
which estimate better the approximation of nearest neighbors. In ad-
dition, the largest dimension of the manipulated features is the same
as the one of its original description (e.g., 32+32=64 for SURF).

4.4. Fusion of different descriptions

This section presents the results of the fusion obtained with the joint
use of different descriptions, in reference to Section 3.2. We evaluate
all the possible combinations of SIFT, SURF and SC descriptors,
and compare our proposal (“FII” in the tables) to two state-of-the-art
descriptor combination approaches: feature concatenation [8] based
on BoF with tf-idf (“CBoF”) and the best late fusion technique [16]
(“LF”). Table 3 shows the performance obtained for the two datasets.

Table 3: mAP results with the fusion of different descriptors.
Descriptors CBoF [8] LF [16] FII

C
O

IL
D

B SIFT-SURF 0.10 0.50 0.57
SIFT-SC 0.10 0.52 0.59

SIFT-SURF-SC 0.11 0.53 0.61

Pa
ri

s
D

B SIFT-SURF 0.10 0.53 0.55
SURF-SC 0.09 0.49 0.53

SIFT-SURF-SC 0.11 0.53 0.54

Due to the poor scores obtained with the classical approach BoF
with tf-idf on individual descriptors (see Table 1), the results ob-
tained here with approach CBoF are low again, even if the fusion
improves them slightly. The LF method performs better for the two
datasets, but it is not able to outperform the FII method, whatever
the combination. This is due to the fact that the former method only

considers the associated neighbors to the nearest word to the query,
while the FII considers several combinations of word neighbors. We
also observe that the best configurations of descriptors are not the
same for the two datasets: it is SIFT-SURF-SC for COIL DB and
SIFT-SURF for Paris DB; descriptor SC penalizes the combined de-
scription for Paris DB.

CBoF builds a high dimensional space by concatenating several
descriptors. It requires more memory compared to LF approach. For
FII, computational time is related to the number of fused descriptors,
as the complexity of multi-sequence algorithm is n logn, where n
denotes the number of descriptors. However, the fusion of reduced
descriptors shortens the computational time without compromising
mAP, as it is experimented in the following Section 4.5.

4.5. Fusion of different reduced descriptions

Finally, we evaluate the combination of several descriptors with their
reduced version. Table 4 shows the mAP obtained and associated
averaged retrieval time for COIL DB and Paris DB. An Intel(R)
Core(TM) i7-2670QM computer with CPU 2.20 GHz and 8 GB de
RAM was used to measure the computational time. We observe that,
for FII, the best mAP are similar to or even better than the ones ob-
tained by fusing the original descriptions (Table 3), and always better
than the ones of LF. Note that the total amount of dimensions for the
fused reduced descriptions never exceed 128, which is the dimen-
sion of the largest description used alone (SIFT). However, compu-
tational time for LF is slightly faster since our algorithm performs
several combinations to find the best nearest neighbors (the largest
gap concerns Paris DB with six combined descriptions).

Table 4: mAP and averaged retrieval time with the fusion of different reduced
descriptors.

Descriptors LF [16] Time (s) FII Time (s)

C
O

IL
D

B SIFTPCA64 SURFPCA32 0.49 0.031 0.57 0.033
SIFTPCA32 SURFPCA20 SCPCA12 0.48 0.043 0.58 0.045
SIFTPCA32

PLS32 SURFPCA20
PLS20 SCPCA12

PLS12 0.50 0.079 0.67 0.083

Pa
ri

s
D

B SIFTPCA64 SURFPCA32 0.53 0.524 0.54 0.609
SIFTPCA32 SURFPCA20 SCPCA12 0.49 0.738 0.50 0.928
SIFTPCA32

PLS32 SURFPCA20
PLS20 SCPCA12

PLS12 0.49 1.480 0.51 3.680

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach to the fusion of mul-
tiple image descriptors based on an improved inverted multi-index
structure. The experiments performed for similarity search on
two datasets have demonstrated the relevance of their combination
through this structure: the combination of different image character-
istics clearly improves the content representation, and the strategy
of fusion brings distinctiveness during nearest neighbor search. The
proposal has demonstrated its superiority facing two state-of-the-art
fusion approaches [8, 16]. In addition, we have shown that the use
of complementary techniques of dimension reduction as description
decomposition, PCA and PLS, contributes to improve distinctive-
ness during similarity search, while potentially reducing the volume
of manipulated features, and then limiting the computational com-
plexity despite the multiple descriptions involved.

The descriptors combined were chosen a priori, according to
their presupposed complementarity. In the future, we plan to study
measures of complementarity in order to combine optimal configu-
rations of descriptors, before evaluating the whole similarity search
engine at large scale.
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trieval Effectiveness of Descriptors for Searching in Large Im-
age Databases,” Journal of Information and Data Manage-
ment, vol. 2, no. 3, pp. 305–320, 2011.

[13] J. Yue, Z. Li, L. Liu, and Z. Fu, “Content-based Image Re-
trieval using Color and Texture Fused Features,” Mathemati-
cal and Computer Modelling, vol. 54, no. 34, pp. 1121–1127,
2011, mathematical and Computer Modeling in Agriculture.

[14] R. da S. Torres, A. X. Falcão, M. A. Gonçalves, J. P. Papa,
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